
Personal Computer
Circuit Design
Tools

(310) 833-0710

N E W S L E T T E R
Copyright intusoft, April 1989
New ISSPICE/286 Breaks the DOS 640K Barrier

mode version of ISSPICE for 80386
machines, intusoft announces
ISSPICE/286. ISSPICE/286 is a ver-
sion of SPICE (Berkeley compatible)
that runs in protected mode under
DOS 3.1 and up. It will allow any
80286 based PC to utilize Extended
memory to run Spice simulations.
With ISSPICE/286 you can simulate
circuits with over 2000 components
with as little as 2 megabytes of ex-
tended memory. ISSPICE/286 runs
about 20% slower than ISSPICE

v1.41. So in order to provide you with the most efficient
simulation possible, intusoft is including the ISSPICE version
1.41 (real mode) SPICE simulator with each new order of ISSPICE/
286. The combination of the two programs will allow users to run
simulations under 200 nodes at top speed without having to pay
for the protected modes' complex addressing scheme. But
when a large simulation capability is needed for an ASIC design
or a lengthy switching power supply simulation, users can then
call upon the power of ISSPICE/286.

ntusoft announces the end to the "Memory Limit Exceeded"
error message. In the tradition
of ISSPICE/386, the protected

w
1

x
1

w
2x

2

y

 In This Issue

1 New ISSPICE/286!

2 Neural Networks
and SPICE

8 Using SPICENET,
PRESPICE, and ISSPICE

for System Simulation

I

13-1

eural networks, or nonlinear adaptive control sys-
tems, are emerging as a viable new technology. Back
in November, 1986 [1] we introduced a set of digitalN

elements using threshold logic techniques to improve the
performance of SPICE for digital simulation. It turns out that
one class of neural networks, based on the Perceptron, are
in fact a modification of threshold logic theory. We are
developing the modeling extensions necessary to simulate
these networks with SPICE. Before discussing the theory
and modeling techniques, however, an exploration of po-
tential applications for these networks will provide a road
map for our simulation goals.

First, the theory is still developing. Second, there are more
questions than answers. Some simple networks, when
extended to solve more complex problems, will use more
computing resources than are available. These problems
are often solved using network topologies based on heuris-
tic principals. Heuristics insights are drawn from Biology,
Mathematics and Engineering. In Biology, the learning
characteristics for simple action-reaction processes have
been measured and the basic anatomy is known. In
Mathematics and Engineering, the models for neurons
have been developed along with some stability criteria.
Many heuristic networks and learning algorithms are being
pursued; for example, Sejnowski [2] describes a 2 layer
perceptron with 120 hidden nodes that was trained to
transcribe text phonetically into speech. Simulation tools
developed along these lines can help shape the theory and
develop better network topologies.

Another direction of research leads to the practical appli-
cation of these networks. Current artificial intelligence, AI,
technology uses knowledge based expert systems. This
type of system can only be applied to a static technology
because the decisions are rule based. The rules are cast
by picking the brains of human experts. These problems in
AI systems can be solved using neural nets. First, neural

Using SPICE for Neural Network Development

New Opportunities for Innovation
13-2

13-3
nets can be trained by example, thus developing their own
rules and adapting to change. Second, the training may not
require the interface between a team of programmers and
a human expert.

As our society produces more complex high technology
products, the people who understand these products di-
minishes, first, to the point of not being able to repair or
maintain the products and second, to the point of not even
getting a new product through a manufacturer's production
line. Built-in test and redundancy are being used to solve
some of these problems. Perhaps neural network technol-
ogy can be developed along with simulation to produce
intelligent test systems. To accomplish this, there must be
a neural network capable of handling the problem and a
number of training sets that can be applied to the network
before production components are to be evaluated. SPICE

can provide the initial training sets and also assist in
network development, both at the circuit level and the
theoretical level.

Shown below is the basic threshold logic element. Two
signals, x

1
 and x

2
, are multiplied by weights w

1
 and w

2
 and

the sum of the result is compared with a threshold to form
the y output. Logic states are all taken as 0 or 1.

y = 1, if w
1
x

1
 + w

2
x

2
 > y

t

 = 0, if w
1
x

1
 + w

2
x

2
 < y

t

To make this an adaptive network, a set of training inputs
is applied sequentially. The weights, w

1
 and w

2
, are

changed slightly whenever the result is in error and when
they have an output contribution, that is, w

1
 is changed only

if x
1
 is 1. It can be seen that this approach yields separating

Putting Neural Nets to Work

The Perceptron,
an Analog of Biological Neural Activity

y

w
1x

1

x
2 w

2

functions that are almost wrong because the adaptive
correction stops within a small neighborhood of the
previous wrong answer. An improvement is made to this
network by replacing the hard limiting threshold with a
function that produces an output with a proportional error
characteristic. It turns out that a continuous function (at
least one that is continuously differentiable) is preferred.
The function commonly used is given by:

1
 1 + e-(x-θ)

where y is the weighted sum of inputs
and θ is the threshold.

The difference between the desired output and the actual
output is then fed back to control the weights as follows:

let d = the desired output,
then form an error, δ = y(1-y)(y-d)

and adapt the weights, w
j
(t + 1) = w

j
(t) + ηδx

j
 ,

where η is a gain constant
and t is time

Notice that in addition to the gain shaping of the threshold
limiter, the function y(1-y) that was placed in the adaptive
loop has high gain only in the threshold region. Instabilities
caused by high gain near threshold will tend to kick the
system out to the more stable low gain regions. This will
tend to limit chaotic results, however, final solutions can still
be sensitive to initial conditions.

When additional layers of perceptrons are connected, the
intermediate layers use the average δ of the next layer,
taken backward from the output, to form their weight
computations. This is the back propagation algorithm of
Rumelhart [3]. A 3 layer perceptron is sketched in Figure 1.
The advantage of adding layers lies in the ability to sepa-
rate complex shapes; for example the points enclosed by
an image of the letter 'O' can be classified using 3 layers.

y =

Adding Layers with Back Propogation
13-4

Figure 1, A 3 Layer Perceptron classifies
inputs that belong in the pattern 'O'.

In order to make SPICE models for the perceptron, it is
necessary to break the computation into blocks that can be
easily expanded to include multiple layers and many nodes
within each layer. The block diagram shown in Figure 2
shows the interconnect or Axon block. Inputs are voltages
and outputs are currents. This allows the forward and back
propagation summations to take place by connecting
wires. The unit time delay represents the recursive itera-
tion, its formulation will be discussed later. The elements
GA and GB are used as multipliers.

First Hidden Layer

y
Output

Inputs

Second Hidden Layer

Output Layer

Building SPICE Models

Figure 2, An Axon block diagram and its symbolic representation

x1

x2

x
1

x
2

13-5

Building SPICE Models (Continued)

The second building block shown in figure 3 is called a Cell.
It performs the threshold logic summation and provides the
threshold function. The back propagation window, y(1-y), is
formed in the top loop. Elements shown in the block
diagrams are all found in the intusoft System model
libraries. The representations can be streamlined by
flattening the subcircuits and removing duplicate buffering
parts. The flattened SPICE listing is given in Table 1.

Table 1, SPICE Listings for Neural Net Elements
RTD1 1 0 1
**
RX3 3 0 1K
RX2 2 0 1K
RX10 10 0 1K
*Summer below, W is the initial
*condition of the weight passed
*into the subcircuit as a parameter
*and evaluated using PreSpice
EX7 2 0 POLY(2) 1 0 3 0 {W} 1 1
GA 9 6 POLY(2) 2 0 6 9 0 0 0 0 1
GB 0 8 POLY(2) 10 0 9 0 0 0 0 0 1
E1 10 0 7 0 1
EX3 3 0 POLY(2) 10 0 5 0 0 0 0 0 1
.ENDS

.SUBCKT VTOI 1 2 3
* I(3) = -V(1) + V(2)
G 0 3 POLY(2) 1 0 2 0 0 -1 1
.ENDS

H1 9 0 VJ 1
VJ 1 0
*Multiplier below
EX12 12 0 POLY(2) 63 0 2 0 0 0 0 0 1
EX14 10 0 POLY(2) 2 0 8 0 0 -1 1
H2 63 0 V6 1
V6 11 0
EX26 3 0 POLY(2) 10 0 12 0 0 0 0 0 1
X4 5 6 EXP
.ENDS

.SUBCKT AXON 9 6 7 8 5 {W=.01}
*W=.01 Default Value for Weight
*5 Gain, η
*8 IBOUT - Back Propagation Output
*9 VAXON - Voltage In
*6 IAXON - Current Out
*7 VDELIN - Back Propagation Input
** Z Transform Unit Time Delay **
ETD1 30 0 2 0 1
RTI 30 0 1K
T1 30 0 1 0 Z0=1 TD=1

.SUBCKT CELL 1 2 11 3
* 2 Output y or Xi
* 1 IJ - Current Summation
* 11 IDELIN - Back Propagation In
* 3 VDELOUT - Back Propagation Out
*Resistors to make Spice Happy, 2
*connections per node
RX2 2 0 1K
RX9 9 0 1K
RX7 7 0 1K
RX8 8 0 1K
RX63 63 0 1K
RX12 12 0 1K
RX5 5 0 1K
RX6 6 0 1K
RX10 10 0 1K
RX3 3 0 1K
X5 8 7 2 DIVIDE
EX6 5 0 POLY(2) 9 0 8 0 0 -1 .5
EX7 7 0 POLY(2) 6 0 8 0 0 1 1
V2 8 0 1

Figure 3, The Cell performs the threshold logic summation
 and the back propagation window function
13-6

Figure 4, A 3 layer perceptron using the new SPICE symbols

Next, Figure 4 shows how the blocks are put together to
make the 3 layer Perceptron shown in Figure 1. A simple
summing symbol was added to make the training set
comparison.The unit time delay is used in the Axon block
to form the recursive summation. An alternate implemen-
tation will be shown in the next newsletter using switched
capacitors. Both implementations need a method for ini-
tialization of the weights and the introduction of training
sets. Our next newsletter will illustrate these techniques
and add several examples. In the meantime, you can look
through Lippman [4] for a survey of some other neural net
algorithms or purchase the book by Rumelhart [3], from
MIT press, volume 1 and volume 2. A set of software
sample problems is also available.
13-7

Bibliography
[1] Simulating With Spice

Meares, L.G.; Hymowitz, C.E.
Intusoft, 1988 pp. 4-15 to 4-20
Originally published Nov, 1986 Intusoft Newsletter

[2] NetTalk: A Parallel Network That Learns to Read Aloud
Sejnowski,T.; Rosenberg,C.R.
Johns Hopkins Univ. Technical Report JHU/EECS-86/01, 1986

[3] Learning Internal Representations By Error Propagation
Rumelhart,D.E.; Hinton,G.E.; Williams,R.J.
Parallel Distributed Processing: Exploration in the Microstructure
of Cognition, Vol 1, Foundations, MIT Press, 1986

[4] An Introduction to Computing With Neural Nets
Lippmann, R.P.
IEEE ASSP Magazine pp. 4-21 April, 1987
13-8

Analog Computer Models
These elements have a wide variety of uses as we have seen
in the Neural Network article and above. With SPICENET

(schematic entry) and PRESPICE (model libraries), the ease of
use of these models is greatly facilitated.

The Versatility of

SUM3

K1

K2

K3

X3
SUM3

V(38)
DISTANCE

7

E1
1

100U

V(1)
VELSQ

SPICE is an excellent tool for performing a broad spectrum of system analyses. As
a design takes shape, these analyses can be used to form or verify system
specifications. When the design matures, the various system elements can be
replaced one at a time by actual circuitry and the system performance re-evaluated
stage by stage. This process would create a superior design with individual portions
fitting more smoothly into the overall system while providing a better understanding
of the design in general. The wide variety of analog computer functions that are
found in the PRESPICE and SPICENET programs can be applied to a vast array of
applications.

The schematic below describes a pinewood toy car race. Of interest is the car’s
acceleration, velocity, and distance traveled under the effects of gravity and various
coefficients of aerodynamic friction. The simulation was actually prompted by a
young boy’s request to find out which one of his two race cars would be a better bet
to win a local pinewood derby.

The race consisted of releasing the car, initially at rest, from the top of a hill (incline
45° X axis 8', Y axis 8'). At the X axis distance of 8', the downward incline leveled

RACE Circuit
Top Level Netlist

*INCLUDE DIGITAL.LIB
*INCLUDE SYS.LIB
.TRAN .1 5 UIC
*ALIAS V(38)=VDISTANCE
*ALIAS V(3)=VELOCITY
*ALIAS V(5)=VACCEL
*ALIAS V(7)=VGRAVITY
.PRINT TRAN V(38) V(3) V(5) V(37)
.PRINT TRAN V(7) V(2) V(1) V(4)
X2 3 38 SINT {K=1}
X3 7 3 1 5 SUM3 {K1=7 K2=-.21M
+ K3=-2.1M}
X4 3 3 1 MUL {K=1}
V2 4 7 7
RV2 4 0 1MEG
E1 0 2 38 4 1
RE1 2 0 1MEG
X7 2 0 37 LIMITER
R1 7 37 1K
R37 37 0 1MEG
C1 7 0 100U IC=1
X1 5 3 SINT {K=3.2 }
*SCALED TIMES 1/MASS
.END

Subcircuits

* INTEGRATOR
.SUBCKT SINT 1 2
*PARAMS ARE GAIN={K}
RIN 1 0 1E12
E1 3 0 0 1 {K}
C1 2 4 1U IC=0
R1 3 4 1MEG
E2 2 0 0 4 {1E6}
.ENDS

.SUBCKT LIMITER 1 2 3
* + - OUT
* LIMITS OUTPUT TO
* 0 OR 1 VOLT
B3 3 0 V=V(1) - V(2) < 0 ? 0 :
+ V(1) - V(2) > 1 ? 1 :
+ V(1) - V(2)
.ENDS

K/S

X1
SINT

K/S

X2
SINT

A

B

K*A*B

X4
MUL

V(3)
VELOCITY

V2

C1 1
13-9

Car #1, with the
smaller coeffcient
of friction,
traveled the
course distance
(40') about .538
sec. faster than
Car #2.

Finish

0'

0'

8'

Yaxis

8' 40' Xaxis

Race
Course

Start

SUM3

K1

K2

K3

X3
SUM3

V(38)
DISTANCE

V(5)
ACCEL

7

E1
1

X7
LIMITER

100U V(7)
VGRAVITY

 TIME .5SEC / DIV

R1 1K

V(1)
VELSQ

Car #1, Distance

Car #2, Distance

Acceleration
1 ft/sec2/div.

Velocity, Car #1
2ft/sec/div

X Axis
Distance
10 ft/div.

off. The finish line was at an X axis of distance of 40' from the start line. The
objective was to determine which of the two cars, each with a different aerody-
namic coefficient of friction, would negotiate the course faster.

The schematic shows the interconnection of the PRESPICE System library elements
and the results. At E1's input, the x axis distance traveled, V(38), is compared to
V2 (7 volts) plus the limiter output (1 volt at the start). When V(4) reaches 8,
corresponding to the bottom of the hill, the limiter output will go from 1 to 0 and thus
remove the effects of gravity. The equation Accel = 7G + K1V + K2V

2 is used to
derive the acceleration. G is the effect of gravity, and K1 and K2 are coefficients of
friction. The velocity and the distance traveled are derived from the acceleration
by the integrator elements. R1 and C1 are needed to stabilize the high gain of the
limiter element. By altering the coefficients of friction we were able to simulate the
performance of each car. The simulation shows, as expected, that the car with the
smaller coefficient of friction traveled course distance in a shorter amount of time;
about .538 seconds. Oh, and about the race, our young engineer lost. It seems that
he was disqualified for obtaining outside assistance.

K/S

X1
SINT

K/S

X2
SINT

A

B

K*A*B

X4
MUL

V(3)
VELOCITY

V2

C1 1

ISSPICE - A Toy Car Race

SPICE is an effective simulation tool for
system analysis
13-10

